

Operating Instructions for

Thermal Flow Meter for bi-directional measurements

Model: KEP-2

We don't accept warranty and liability claims neither upon this publication nor in case of improper treatment of the described products.

The document may contain technical inaccuracies and typographical errors. The content will be revised on a regular basis. These changes will be implemented in later versions. The described products can be improved and changed at any time without prior notice.

© Copyright

All rights reserved.

1. Contents

1.	Contents	2
2.	Note	4
3.	Instrument Inspection	4
4.	Regulation Use	5
5.	Operating Principle	6
6.	Safety instructions	
7.	Scaling Analogue output Compressed Air	8
8.	Installation Description	9
	8.1 Pipe/tube requirements	9
	8.2 Inlet / outlet runs	
	8.3 Installation of KEP-2	
	8.4 Displayhead Position	
9.	3 3	
	9.1 Flow for different gases	
10.	. Electrical wiring	
	10.1 Modbus RTU, 420mA, Pulse	
	10.2 Connection diagrams	
11.	. Operation	
	11.1 Initialization	
	11.2 Main menu	
	11.3 Settings	
12.	. Status / Error messages	
	12.1 Status messages	
	12.2 Error messages	
	. Maintenance	
	. Cleaning of the sensor head	
	. Re-Calibration	
	. Spare parts and repair	
	. Calibration	
	. Warranty	
	. Technical Information	
	. Order Codes	
21.	. Dimensions	38

22. Disposal	39
23. EU Declaration of Conformance	40

Manufactured and sold by:

Kobold Messring GmbH Nordring 22-24 D-65719 Hofheim

Tel.: +49(0)6192-2990 Fax: +49(0)6192-23398 E-Mail: info.de@kobold.com Internet: www.kobold.com

2. Note

Please read these operating instructions before unpacking and putting the unit into operation. Follow the instructions precisely as described herein.

The instruction manuals on our website www.kobold.com are always for currently manufactured version of our products. Due to technical changes, the instruction manuals available online may not always correspond to the product version you have purchased. If you need an instruction manual that corresponds to the purchased product version, you can request it from us free of charge by email (info.de@kobold.com) in PDF format, specifying the relevant invoice number and serial number. If you wish, the operating instructions can also be sent to you by post in paper form against an applicable postage fee.

Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com

The devices are only to be used, maintained and serviced by persons familiar with these operating instructions and in accordance with local regulations applying to Health & Safety and prevention of accidents.

When used in machines, the measuring unit should be used only when the machines fulfil the EC machinery directive.

3. Instrument Inspection

Instruments are inspected before shipping and sent out in perfect condition. Should damage to a device be visible, we recommend a thorough inspection of the delivery packaging. In case of damage, please inform your parcel service / forwarding agent immediately, since they are responsible for damages during transit.

Scope of delivery:

The standard delivery includes:

Thermal Flow Meter for bi-directional measurements Model: KEP-2

4. Regulation Use

Any use of the device, which exceeds the manufacturer's specification, may invalidate its warranty. Therefore, any resulting damage is not the responsibility of the manufacturer. The user assumes all risk for such usage.

The KEP-2 consumption sensor for bi-directional measurements is used for continuous flow measurement in both directions.

The KEP-2 consumption sensor for bi-directional measurements is designed and constructed exclusively for the intended purpose described here and may only be used accordingly.

The user must check whether the instrument is suitable for the selected application. It must be ensured that the medium is compatible with the wetted parts. The technical data listed in the data sheet are binding.

Improper handling or operation outside the technical specifications is not permitted. Claims of any kind based on improper use are excluded.

Operating principle:

The KEP-2 consumption probe operates according to the calorimetric measuring method.

The basis of this measuring method is the electrical heating of the mechanically protected built-in sensor. The mass flow, the volume flow and the flow velocity can be measured and determined by the resulting heat flow to the passing medium (gas).

With the calorimetric measurement method (based on the measurement principle), the operating temperature and pressure of the medium have no influence on the measurement result, only the material data of the gas component are decisive.

The integrated flow direction recognition allows the bi-directional flow measurement with display of the flow values. The flow direction is indicated by arrows in blue and green.

A meter reading is available for each flow direction, displayed in the colours blue and green according to flow direction.

5. Operating Principle

The KEP-2 is a compact consumption counter for compressed air and gases.

Special features:

- Optimum accuracy due to compact design
- Integrated Display showing Flow, consumption, velocity and temperature for two directions
- Input inner tube diameter via display keys
- Units free selectable. m³/h, m³/min, l/min, l/s, kg/h, kg/min, kg/s, cfm
- Modbus RTU (RS485) Interface
- 2x Analogoutput 4...20 mA
- 2x Pulse output galv. isolated

Service Software

- Analogue output 4...20 mA scaleable
- Selection of gas type (Air, Nitrogen, Argon, Nitrous oxide, CO2, Oxygen, Natural gas)
- · Read out Service data
- Sensordiagnoses

6. Safety instructions

Read this manual carefully before installing the VA 520. If the instructions given in this manual, in particular the safety instructions, are not observed, this may result in hazards for people, equipment and plants

Please read carefully before starting the device!

Warning: Do not exceed the pressure range of 16 bar!

Observe the measuring range of the sensor!

The screwed fixture must be pressure tight.

It is absolutely necessary to avoid condensation on the sensor element or water drops in the measuring air as they may cause faulty measuring results.

The manufacturer cannot be held liable for any damage which occurs as a result of non- observance or non-compliance with these instructions. Should the device be tampered with in any manner other than a procedure which is described and specified in the manual, the warranty is cancelled and the manufacturer is exempt from liability.

The device is destined exclusively for the described application.

We offer no guarantee for the suitability for any other purpose and are not liable for errors which may have slipped into this operation manual. We are also not liable for consequential damage resulting from the delivery, capability or use of this device.

We offer you to take back the instruments of the instrument's family KEP-2 which you would like to dispose of.

Qualified employees from the measurement and control technology branch should only carry out adjustments and calibrations.

Flammable gases

If this consumption sensor is used for measurement of flammable gases (e. g. natural gas and so on) we expressly would like to point out that the sensor has no DVGW admission, however, it can be used for measurements in natural gas. A DVGW admission is not mandatory.

The consumption sensor corresponds with the current state of technology and basically it can be used in any flammable and non-flammable gases.

If the sensor is used e.g. in the medium natural gas, the sensor will be adjusted for natural gas. The calibration protocol (inspection certificate) will be included in the scope of delivery.

The area outside the pipeline (ambient area of the sensor) must not be an explosive area

The installation has to be carried out by authorized professionals.

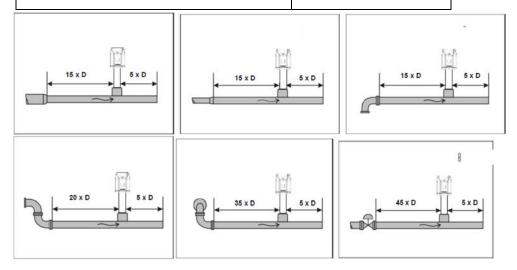
7. Scaling Analogue output Compressed Air

Reference DIN1945/ ISO 1217: 20°C, 1000 mbar (Reference during calibration)

Description	Version	Analogu	
	Low Speed		025 l/min
KED 2 with integrated 1/" maga paction	Standard	420 mA =	050 l/min
KEP-2 with integrated ¼" meas. section	Max	420 IIIA –	0105 l/min
	High Speed		0130 l/min
	Low Speed		020 m³/h
KED 2 with interveted 1/" mage coetion	Standard	420 mA =	045 m ³ /h
KEP-2 with integrated ½" meas. section	Max	420 mA =	090 m³/h
	High Speed		0110 m ³ /h
	Low Speed		045 m³/h
KED O with interpretable 3/# manage and income	Standard	4 00 4	085 m³/h
KEP-2 with integrated ¾ meas. section	Max	420 mA =	0175 m ³ /h
	High Speed		0215 m³/h
	Low Speed		075 m³/h
KED O with intermeted 4" many and the	Standard	4 00 4	0145 m ³ /h
KEP-2 with integrated 1" meas. section	Max	420 mA =	0290 m³/h
	High Speed		0355 m ³ /h
	Low Speed		0140 m ³ /h
ICED O with interpreted 41/6 many and the control	Standard	4 00 4	0265 m³/h
KEP-2 with integrated 1¼" meas. section	Max	420 mA =	0530 m ³ /h
	High Speed		0640 m³/h
	Low Speed		0195 m³/h
KED O with into material 41/6 manages and the	Standard	4 00 4	0365 m³/h
KEP-2 with integrated 1½ meas. section	Max	420 mA =	0730 m³/h
	High Speed		0885 m³/h
	Low Speed		0320 m³/h
KED O with intermedial Off management in	Standard	4 00 4	0600 m ³ /h
KEP-2 with integrated 2" meas. section	Max	420 mA =	01195 m³/h
	High Speed		01450 m ³ /h
	Low Speed		0550 m³/h
KED O with interpreted 01/6 many and the	Standard	4 00 4	01025 m³/h
KEP-2 with integrated 2½ meas. section	Max	420 mA =	02050 m³/h
	High Speed	1	02480 m ³ /h
	Low Speed		0765 m³/h
KED 2 with integrated 2" reces coeffer	Standard	1 20 4 -	01420 m ³ /h
KEP-2 with integrated 3" meas. section	Max	420 mA =	02840 m³/h
	High Speed]	03440 m³/h

8. Installation Description

8.1 Pipe/tube requirements


- · Correctly sized gaskets
- Correct aligned flanges and gaskets
- Diameter mismatch at the pipe junctions should be avoided but must be less than 1 mm. For further information see ISO 14511
- Ensure clean pipes after installation

8.2 Inlet / outlet runs

The principle of thermal Mass flow measurement is very sensitive against disturbances. Therefore, it is necessary to ensure the recommended inlet and outlet runs.

Table of additionally required inlet sections.

Flow obstruction in front of the measuring section	Minimum length inlet section (L1)
Slight curve (bend < 90°)	12 x D
Reduction (pipe narrows towards the meas. section)	15 x D
Expansion (pipe expands towards the meas. section)	15 x D
90° bend or T-piece	15 x D
2 bends á 90° on one level	20 x D
2 bends á 90° 3-dimensional change of direction	35 x D
Shut-off valve	45 x D

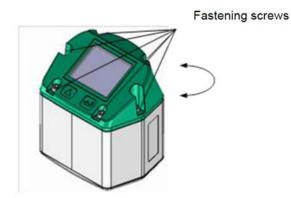
The respective minimum values required are indicated here. If it is not possible to observe the stipulated equalising sections, considerable deviations in the measuring results must be expected.

Attention:

The dimensions of the KEP-2 consumption counter measuring sections do not fullfill the required minimum lengths of the input and outlet runs.

Please ensure recommended in - and outlet distances, dimensions for measuring sections see datasheet.

8.3 Installation of KEP-2


The sensor KEP-2 is pre-supplied with the measuring section.

An installation at customer site is only allowed in the unpressurized state of the system.

The connecting nut is tightened to a torque of 25-30 Nm. Tightness of the connection must be checked and ensured.

8.4 Displayhead Position

The Position of the display head is twistable by 180 e.g. in case of reverse flow direction.

For this purpose, the 6 fastening screws are to be released and the display head rotated 180°.

Caution:

It must be ensured that the connection plugs are still plugged and the gasket is installed correctly.

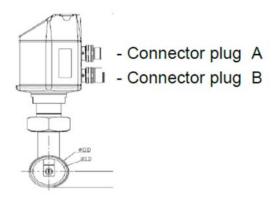
9. Flow measuring ranges

9.1 Flow for different gases

		1/4"	1/2"	3/4"	1"	1 1/4"	1 ½"	2"	2 ½"	3"
		Analog output 20mA								
		l/min	[m³/h]							
Reference	DIN1945/ ISO 1	217: 20°C	c, 1000 m	bar (Refe	rence duri	ing calibra	ition)	•		
	Low Speed	25	20	45	75	140	195	320	550	765
	Standard	50	45	85	145	265	365	600	1025	1420
Air	Max	105	90	175	290	530	730	1195	2050	2840
	High Speed	130	110	215	355	640	885	1450	2480	3440
Adiustme	nt to DIN 1343:	0°C. 1013	.25 mbar							
	Low Speed	25	20	40	70	130	180	295	505	705
	Standard	50	40	80	135	240	335	550	945	1305
Air	Max	100	80	160	270	485	670	1100	1885	2610
	High Speed	120	100	195	325	590	815	1330	2280	3165
	Low Speed	45	35	75	120	220	305	505	865	1200
Argon	Standard	85	70	135	230	415	570	935	1605	2225
(Ar)	Max	170	140	275	460	830	1140	1870	3205	4440
	High Speed	205	170	335	555	1005	1385	2265	3880	5380
	Low Speed	25	20	45	75	140	195	320	545	760
Carbon dioxide	Standard	50	45	85	145	260	360	590	1015	1405
(CO ₂)	Max	105	90	175	290	525	720	1185	2030	2810
	High Speed	130	105	210	350	635	875	1430	2455	3405
	Low Speed	25	20	40	70	130	180	295	505	705
Nitrogen	Standard	50	40	80	135	240	335	550	945	1305
(N ₂)	Max	100	80	160	270	485	670	1100	1885	2610
	High Speed	120	100	195	325	590	815	1330	2280	3165
	Low Speed	25	20	45	75	135	185	305	525	730
Oxygen f	Standard	50	40	80	140	250	345	570	980	1355
(O ₂)	Max	100	85	165	280	505	695	1140	1955	2710
	High Speed	125	105	205	340	610	845	1380	2365	3280
	Low Speed	25	20	45	75	140	190	315	540	750
Nitrous oxide	Standard	50	40	85	140	260	355	585	1005	1395
(N ₂ O)	Max	105	85	170	285	520	715	1170	2010	2785
	High Speed	125	105	210	345	630	865	1420	2435	3375
	Low Speed	15	15 25	25 50	45 95	85 155	115	190	325	450 840
Natural gas (NG)	Standard	30 60	25 50	50 105	85 170	155	215	355	605	840 1680
(ING)	Max High Speed	60 75	50 65	105 125	170 210	310 380	430 520	705 855	1210 1465	1680 2035
	r gases on request	75	ບວ	125	210	300	IJZŪ	633	1400	2033

Other gases on request

Please note:


The consumption sensor corresponds with the current state of technology and basically it can be used in any flammable and non-flammable gases.

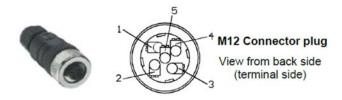
If this consumption sensor is used for measurement of flammable gases (e.g. natural gas and so on) we expressly would like to point out that the sensor has no DVGW admission, however, it can be used for measurements in natural gas. A DVGW admission is not mandatory.

The area outside the pipeline (ambient area of the sensor) must not be an explosive area.

10. Electrical wiring

10.1 Modbus RTU, 4...20mA, Pulse

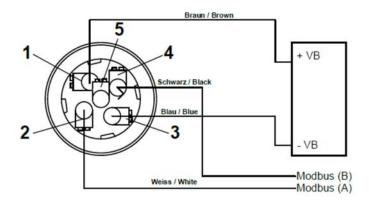
Attention: Not required connections NC must not be connected to a voltage and/or to protection earth. Cut and insulate cables.


	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
Connector plug A	+VB	RS 485 (A) RS 485 (+)	-VB	RS 485 (B) RS 485 (-)	I+ (Ch1) 420 mA
Connector plug B Pulse output (standard)	I+ _(Ch2) 420 mA	Pulse (ch2) galv. isolated	Pulse (ch2) gavl. isolated	Pulse (Ch1) galv. isolated	Pulse (Ch1) gavl. isolated
Colours pulse cables 0553 0106 (5 m) 0553.0107 (10 m)	brown	white	blue	black	grey

Legend:

-VB	Negative supply voltage 0 V
+VB	Positive supply voltage 1836 VDC smoothed
I +	Current signal 420 mA – selected measured signal
RS 485 (A) RS 485 (B)	Modbus RTU A / Modbus RTU (+) Modbus RTU B / Modbus

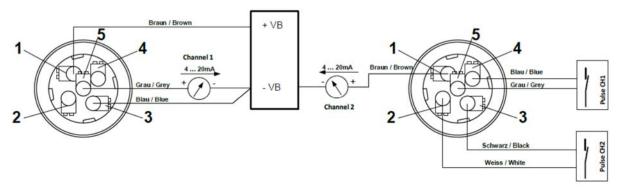
Pulse	Pulse for consumption
NC	Must not be connected to a voltage and/or to protection earth. Please cut and isolate cables.


If no connection cable/ pulse cable is ordered the sensor will be supplied with a M12 connector plug. The user can connect the supply and signal cables as indicated in the connection diagram.

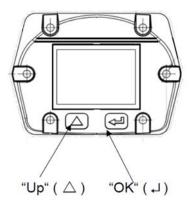
10.2 Connection diagrams

10.2.1 Modbus

Connector plug A (M12 - A-coding)

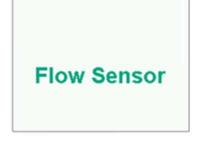

Remark: If the sensor is placed at the end of the Modbus system a termination is required. The sensors have an internal switchable termination, therefore the 6 fastening screws from the lid are to be released and set the internal DIP Switch to "On". It must be ensured that the connection plugs are still plugged and the gasket is installed correctly.

Alternatively, a 120R resistor can be installed in the plug between pin 2 and pin 4.

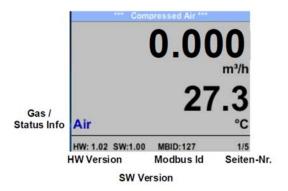

10.2.2 Analogue output (4-20mA, Pulse)

Connector plug A (M12 A-coding)

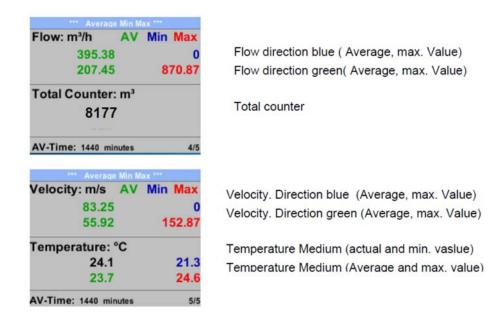
Connector plug B (M12 A-coding)



11. Operation

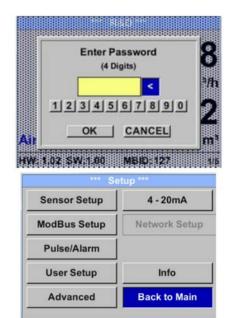

The operation of the KEP-2 is done by the two capacitive key buttons Up (\triangle) and Enter ($\!\!$)

11.1 Initialization


After switching on the KEP-2, the initialized screen is displayed followed by the main menu.

11.2 Main menu

Switching to pages 2-5 or back by pressing key "△".

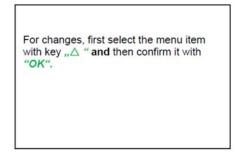


AV-Time (Period for average value calculation) could be changed under Sensor Setup.-Advanced–AV-Time

11.3 Settings

The settings menu could accessed by pressing the key "**OK**". But the access to the settings menu is password protected.



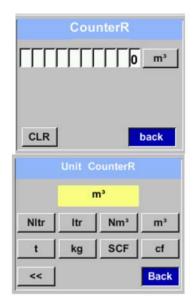

Factory settings for password at the time of delivery: 0000 (4 times zero).

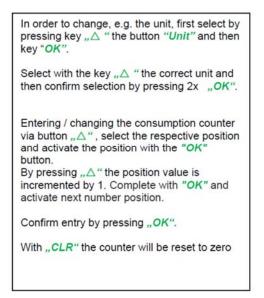
If required the password could be changed at Setup–User setup-Password.

Selection of a menu item or to change a value is done with the key $_n\triangle$ ", a final move to the chosen menu item or takeover of the value change needs the confirmation by pressing the key $_nOK$ "

11.3.1 Sensor Setup Setup → Sensor Setup

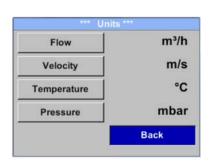
11.3.1.1 Input / change tube diameter

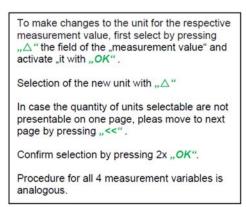

For KEP-2 not adjustable (suspended) as voted on included measuring section with corresponding pipe diameter.

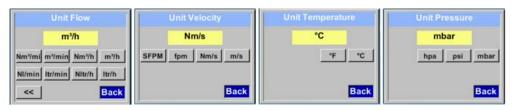

11.3.1.2 Input / change consumption counter Setup → Sensor Setup → Total Counter

For changing one or both counter please select by pressing key "△ " the corresponding counter-button then confirm it with key "OK".

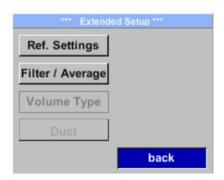
Setup → Sensor Setup → Total Counter → Unit button



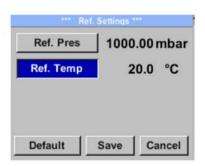



Important!

When the counter reach 100000000 m³ the counter will be reset to zero.

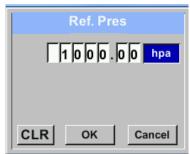

11.3.1.3 Definition of the units for flow, velocity, temperature and pressure $Setup \rightarrow Sensor\ Setup \rightarrow Units$

11.3.1.4 Advanced settings Setup → Sensor Setup → Advanced

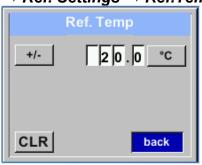


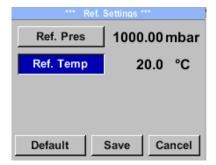
11.3.1.5 Definition of the reference conditions

Here can be defined the desired measured media reference conditions for pressure and temperature and times for the filter and averaging.


- Factory presetting for reference temperature and reference pressure are 20 °C, 1000 hPa.
- All volume flow values (m³/h) and consumption values indicated in the display are related to 20 °C and 1000 hPa (according to ISO 1217 intake condition).
- Alternatively, 0 °C and 1013 hPa (=standard cubic meter) can also be entered as a reference.
- Do not enter the operation pressure or the operation temperature under reference conditions!

Setup \rightarrow Sensor Setup \rightarrow Advanced \rightarrow Ref. Settings




To make changes, first select a menu with button ,, \triangle " and confirm selection by pressing ,,OK".

$\textbf{Setup} \rightarrow \textbf{Sensor Setup} \rightarrow \textbf{Advanced} \rightarrow \textbf{Ref. Settings} \rightarrow \textbf{Ref.Pres}$

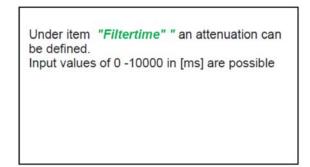
Setup \rightarrow Sensor Setup \rightarrow Advanced \rightarrow Ref. Settings \rightarrow Ref.Temp

In order to change, e.g. the unit, first select by pressing key " \triangle " the field "Units" and then key "OK".

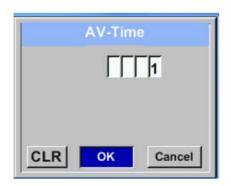
Select with the key $, \triangle$ "the correct unit and then confirm selection by pressing 2x, OK".

Input / change of the value by selecting the respective position with button " Δ "and entering by pressing button "OK".

By pressing " \triangle " the position value is incremented by 1. Complete with "OK" and activate next number position.

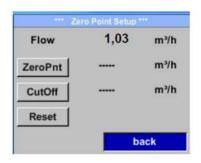

Procedure for changing the reference temperature is the same.

All changes have to be stored by pressing "Save".


With "Default". the sensor is reset to calibration settings.

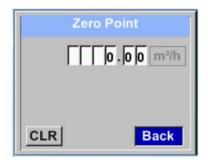
11.3.1.5.1 Time setting for filtering Setup → Sensor Setup → Advanced → Filtertime

 $\textbf{Setup} \rightarrow \textbf{Sensor Setup} \rightarrow \textbf{Advanced} \rightarrow \textbf{AV-Time}$



The time period for averaging can be entered here.

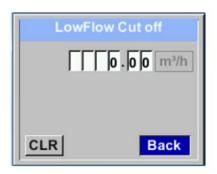
Input values of -1440 1 [minutes] are possible.


For average values see display window 3 + 4

11.3.1.6 Setting of Zeropoint and Low-flow cut off $Setup \rightarrow Sensor \ Setup \rightarrow ZP \ Adjust$

To make changes, first select a menu with button "△" and confirm selection by pressing "OK" .

Setup \rightarrow Sensor Setup \rightarrow ZP Adjust \rightarrow ZeroPnt

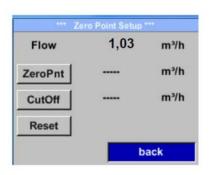

When, without flow, the installed sensor shows already a flow value of > 0 m³/h herewith the zero point of the characteristic could be reset.

For an input / change of the value select with the button "△" the respective number position and activate it with "OK".

By pressing "△" the position value is incremented by 1. Confirm the input with "OK" and activate next number position.

Leave menu with button "Back"

Setup → Sensor Setup → ZP Adjust → CutOff


With the low-flow cut off activated, the flow below the defined "LowFlow Cut off" value will be displayed as 0 m³/h and not added to the consumption counter.

For an input / change of the value select with the button "△" the respective number position and activate it with "OK".

By pressing "△" the position value is incremented by 1. Confirm the input with "OK" and activate next number position.

Leave menu with button "Back"

Setup \rightarrow Sensor Setup \rightarrow ZP Adjust $t \rightarrow$ Reset

By selection of "Reset" all settings for "ZeroPnt" and. "CutOff" are reset.

Menu item to be select with button $,\Delta$ and confirm the reset with ,OK.

Leave menu with button "Back"

11.3.2 Modbus settings

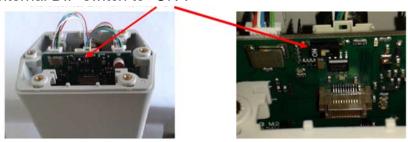
11.3.2.1 Modbus RTU Setup

The Flow sensors KEP-2 comes with a Modbus RTU Interface. Before commissioning the sensor, the communication parameters

Modbus ID, Baudrate, Parität and Stoppbit

must be set in order to ensure the communication with the Modbus master.

Settings → Modbus Setup

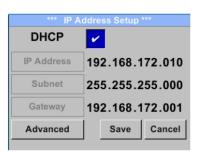

For changes, e.g. the sensor ID, first select by pressing key "△" the field "ID" and then key "OK". Select the desired position by pressing the ">" and select with "OK" button. Change values by pressing the "△" values takeover by pressing "OK". Inputs for baudrate, stopbit and parity is done analogue. By means of the button "Byte Order" it is possible to change the data format (Word Order). Possible formats are "ABCD" (Little Endian) and "CDAB" (Middle Endian) Saving the changes by pressing "Save", therefore select it with key "A" and then confirm it with "OK".

Default values out of factory:

Modbus ID: 1

Baud rate: 19200 Stoppbit: 1 Parity: even Byte Order: ABCD

Remark: If the sensor is placed at the end of the Modbus system a termination is required. The sensors have an internal switchable termination, therefore the 6 fastening screws from the lid are to be released and set the internal DIP switch to "ON".



Alternatively, a 120R resistor can be installed in the plug between pin 2 and pin 4. It must be ensured that the connection plugs are still plugged and the gasket is installed correctly.

Settings → Network Setup

11.3.2.1.1 Network Setup DHCP Settings \rightarrow Network Setup Settings \rightarrow IP Address

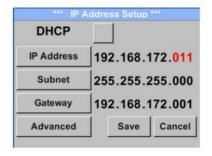
Here you can set up and made a connection, with or without *DHCP*, to a computer.

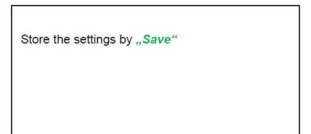
Remark:
With activated DHCP the automatic integration of the sensor in an existing network is possible, without a manual configuration.


Storing of settings by pressing "Save"

11.3.2.1.2 Network Settings static IP

Settings → Network Setup Settings → IP Address → IP Address Settings → Network Setup Settings → IP Address→ Sub Netz Settings → Network Setup Settings → IP Address→ Gateway


analogous.


1 9 2

For manual (static) IP, the "IP Address", "Subnet" and "Gateway" selection keys must be selected and activated with "OK". The first data field of the selection, in this case the IP address, is then marked (red). Confirm with "OK" the corresponding input menu is opened. By means of ">", the next data field is changed. Select the desired position with the ">" key and activate it with the "OK" key. Change the values with the ">" key, and accept the values with the "OK" key. Procedure for "Subnet" and "Gateway" is

back

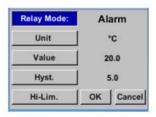
11.3.2.2 Modbus Settings register (2001...2005)

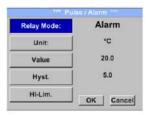
	: :::::::::									
Modbus Register	Register Adress	No.of Byte	Data Type	Description	Default Setting	Read Write	Unit /Comment			
2001	2000	2	UInt16	Modbus ID	1	R/W	Modbus ID 1247			
2002	2001	2	UInt16	Baudrate	4	R/W	0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 19200 5 = 38400			
2003	2002	2	UInt16	Parity	1	R/W	0 = none 1 = even 2 = odd			
2004	2003	2	UInt16	Number of Stopbits		R/W	0 = 1 Stop Bit 1 = 2 Stop Bit			
2005	2004	2	UInt16	Word Order	0xABCD	R/W	0xABCD = Big Endian 0xCDAB = Middle Endian			

11.3.2.3 Modbus Values Register (1001 1500)

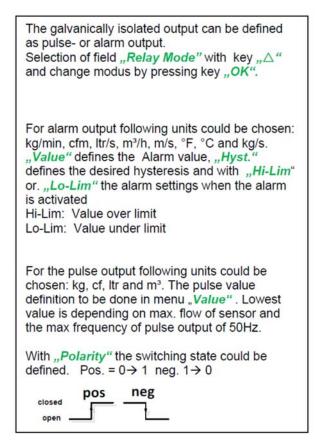
11.3	11.3.2.3 Modbus Values Register (1001 1500)								
Modbus	Register	No.of	Data Type	Description	Default	Read			
Register	Adress	Byte	Data Type	Description	Delault	Write			
1101	1100	4	Float	Flow in m³/h		R	Richtung Grün		
10101	10100	4	Float	Flow III III /II		K	Richtung Blau		
1109	1108	4	Float	Flow in Nm³/h		R	Richtung Grün		
10109	10108	4	Float	Flow III IVIII /II		K	Richtung Blau		
1117	1116	4	Float	Flow in m³/min		R	Richtung Grün		
10117	10116		rioat	T IOW III III /IIIIII			Richtung Blau		
1125	1124	4	Float	Flow in Nm³/min		R	Richtung Grün		
10125	10124		rioat	T low in Tuni / inin			Richtung Blau		
1133	1132	4	Float	Flow in ltr/h		R	Richtung Grün		
10133	10132		rioat	1 10W 111 10/11			Richtung Blau		
1141	1140	4	Float	Flow in Nltr/h		R	Richtung Grün		
10141	10140		rioat	1 IOW III MIU/II		11	Richtung Blau		
1149	1148	4	Float	Flow in Itr/min		R	Richtung Grün		
10149	10148		1 loat	1 IOW III IU/IIIII			Richtung Blau		
1157	1156	4	Float	Flow in Nltr/min		R	Richtung Grün		
10157	10156		riout	T IOW III TVICTIIII			Richtung Blau		
1165	1164	4	Float	Flow in ltr/s		R	Richtung Grün		
10165	10164		riout	1 10W 111 1473			Richtung Blau		
1173	1172	4	Float	Flow in Nltr/s		R	Richtung Grün		
10173	10172		riout	1 low iii Tulayo			Richtung Blau		
1181	1180	4	Float	Flow in cfm		R	Richtung Grün		
10181	10180		11000	T IOW III OIIII			Richtung Blau		
1189	1188	4	Float	Flow in Ncfm		R	Richtung Grün		
10189	10188		11000	T IOW III TYOIIII			Richtung Blau		
1197	1196	4	Float	Flow in kg/h		R	Richtung Grün		
10197	10196		11000	- 10W III Ng/11			Richtung Blau		
1205	1204	4	Float	Flow in kg/min		R	Richtung Grün		
10205	10204		11000	1 10W III Ng/IIIII			Richtung Blau		
1213	1212	4	Float	Flow in kg/s		R	Richtung Grün		
10213	10212	- T	1 1541	Flow in kg/s		, r	Richtung Blau		
1221	1220	4	Float	Flow in kW		R	Richtung Grün		
10221	10220	г	1 1541	1 1011 111 1111			Richtung Blau		

Modbus	Register	No.of				Read	
Register	Address	Byte	Data Type	Description	Default	Write	
1269	1268	4	111400	Consumption m ³	х		Richtung Grün
10269	10268	4	UInt32	before comma		R	Richtung Blau
1275	1274	4	UInt32	Consumption Nm³	х	R	Richtung Grün
10275	10274	4	UIII.32	before comma		K	Richtung Blau
1281	1280	4	UInt32	Consumption Itr before	х	R	Richtung Grün
10281	10280	4	OIIII32	comma		K	Richtung Blau
1287	1286	4	UInt32	Consumption Nltr	х	R	Richtung Grün
10287	10286	4	OIIII32	before comma		K	Richtung Blau
1293	1292	4	UInt32	Consumption of before	x	R	Richtung Grün
10293	10292	4	OIIII32	comma		K	Richtung Blau
1299	1298	4	UInt32	Consumption Ncf	х	R	Richtung Grün
10299	10298	4	OIIII32	before comma		K	Richtung Blau
1305	1304	4	UInt32	Consumption kg	х	R	Richtung Grün
10305	10304	4	OIIII32	before comma		IX.	Richtung Blau
1311	1310	4	UInt32	Consumption kWh	x	R	Richtung Grün
10311	10310		OIIIOZ	before comma			Richtung Blau
1347	1346	4	Float	Velocity m/s			Richtung Grün
10347	10346	4	rioat	Velocity III/3			Richtung Blau
1355	1354	4	Float	Velocity Nm/s			Richtung Grün
10355	10354		i ioat	VCIOCITY 14111/3			Richtung Blau
1363	1362	4	Float	Velocity Ft/min			Richtung Grün
10363	10362		i ioat	velocity i diffili			Richtung Blau
1371	1370	4	Float	Velocity NFt/min			Richtung Grün
10371	10379	-	Ποαι	V Clocky IVI VIIIII			Richtung Blau
1419	1418	4	Float	GasTemp °C			Richtung Grün
10419	10418	-	Ποαι	Odd Cilip O			Richtung Blau
1427	1426	4	Float	GasTemp °F			Richtung Grün
10427	10426	т	riout	Gao i Gilip			Richtung Blau


Remark:


For more additional Modbus values please refer to separate Instruction manual Modbus Installation and Operating Instructions for the sensors KEP-1 and KEP-2.

11.3.3 Pulse/Alarm

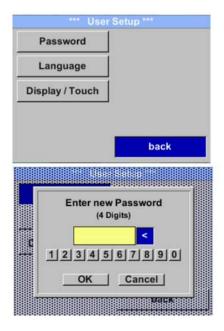

Remark: Settings are valid for both pulse- and alarm-outputs

Setup → Sensor Setup → Pulse/ Alarm

11.3.3.1 Pulse output

The maximum frequency for pulse output is 50 pulses per second (50 Hz). The Pulse output is delayed by 1 second

Pulse value	[m³/h]	[m³/min]	[l/min]
0.1 ltr / Pulse	18	0,3	300
1ltr / Pulse	180	3	3000
0.1m³ / Pulse	18000	300	300000
1 m³ / Pulse	180000	3000	3000000


Table 1 Maximum flow for pulse output

Entering pulse values that are not allow a presentation to the full scale value, are not allowed. Entries are discarded and error message displayed.

11.3.4 User Setup.

11.3.4.1 Password

Settings → UserSetup → Password

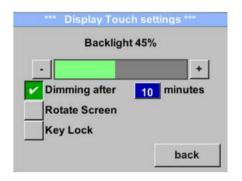
To make changes, first select a menu with button "△" and confirm selection by pressing "OK".

It is possible to define a password. The required password length is 4 digits. Please select with button "△"a figure and confirm it with "OK". Repeat this 4 times.

With "△" the last figure could be deleted. Password input have to be inserted twice.

Confirmation of input/password by pressing "OK".

Factory settings for password at the time of delivery: 0000 (4 times zero).


11.3.4.2 Language Settings → User Setup → Language

Currently 4 languages have been implemented and could be selected with button $_{n}\triangle$ ".

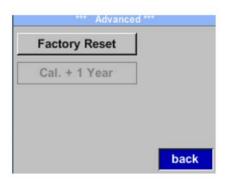
Change of language by confirming with "OK". Leaving the menu with button "back".

11.3.4.3 Display/Touch Settings → UserSetup → Display / Touch

With the button "-" and with button "+" it is possible to adjust the backlight / display brightness. The actual / adjusted backlight brightness is showed in the graph "Backlight."

By activation "Dimming after" and entering a time a display dimming could be set.

With "Rotate Screen" the display information could be rotated by 180°.

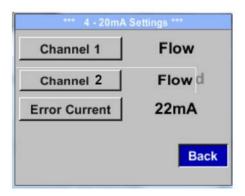

By activation of "Key Lock" the operation of the sensor locked.

Unlocking the keyboard is only possible by restarting the sensor and calling the operating menu within the first 10s. To do this, use the

"OK" button to enter the operating menu during

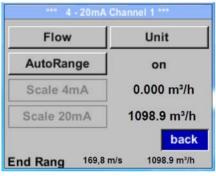
this period

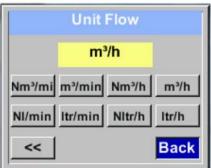
11.3.5 Advanced Settings → Advanced

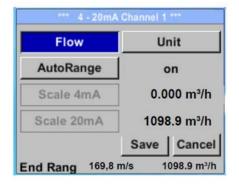


By pressing "Factory Reset" the sensor is set back to the factory settings.

If the set/defined calibration date has been reached, the message "CAL" appears in the display and the "Cal + 1 year" key is activated. By pressing the "Cal + 1 year" key, the next calibration can be extended by another year.


This is done at the user's own responsibility.


11.3.6 4-20 mA Settings → 4-20mA



To make changes, first select a menu with button "△" and confirm selection by pressing "OK".

Settings →4-20mA → Channel 1

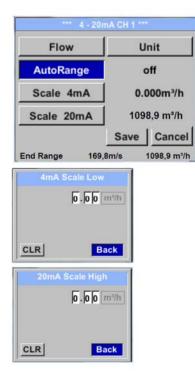
The 4-20 mA Analogue output of the Sensor VA 500 can be individually adjusted.

It is possible to assign following values "Temperature", "Velocity" und "Flow" to the channel CH 1.

To make changes, first select the value item with button ${}_{n}\Delta^{m}$ and confirm

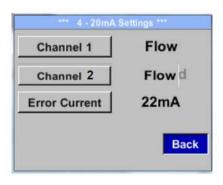
Moving between the different measurements values or to deactivate the 4-20mA with setting to "unused" by pressing "OK".

To the selected measurement value a corresponding / appropriate unit needs to be defined. Select "Unit" with " \triangle " and open menu with "OK".


Select required unit with $,\Delta''$ and take over by pressing ,OK''.

Here e.g. for the measurement value Flow, procedure for the other measurements values is analog.

For saving the changes done press button "Save" to discard the changes press button "Cancel".


Leaving the menu with "Back".

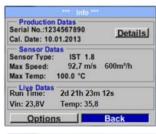
Settings →4-20mA → Channel 1 AutoRange

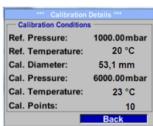
The scaling of the 4-20mA channel can be done automatically "Auto Range = on" or manual "AutoRange = off" . With button "△" select the menu item "AutoRange" select with "OK" the desired scaling method. (Automatically or manually) In case of AutoRange = off with "Scale 4mA" und "Scale 20mA" the scale ranges needs to be defined. Select with button "A" the item "Scale 4mA" or "Scale 20mA" and confirm with "OK". Input of the scaling values will be analogous as described before for value settings. Using "CLR" clears up the complete settings at once. For "Auto on", the max. scaling is calculated based on the inner tube diameter, max. measurement range and the reference conditions settings. Take over of the inputs with "Save" and leaveing the menu with "Back".

Settings → 4 -20mA → Error Current

This determines what is output in case of an error at the analog output.

- 2 mA Sensor error / System error
- 22 mA Sensor error / System error
- None Output according Namur (3.8mA 20.5 mA)
 4mA to 3.8 mA Measuring range under range
 20mA to 20.5 mA Measuring range exceeding


To make changes first select a menu item "Current Error" with button " \triangle " and then select by pressing the "OK" the desired mode


For saving the changes done press button "Save" to discard the changes press button "Cancel".

Leaving the menu with "Back".

11.3.7 KEP-2 Info

Setup → Sensor Setup →Info

Here you get a brief description of the sensor data incl. the calibration data.

Under **Details**, you are able to see in addition the calibration conditions.

11.3.8 Default Settings communication

Primary Adress*: 1

ID: Seriennummer des Sensors

Baud rate*: 2400

Medium*: depending on medium (Gas oder Compressed Air)

VIF coding : Primary VIF

Both addresses, Primary address and ID, could be automatic searched in the M-Bus system.

11.3.9 Default values transmitted

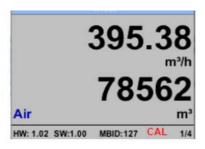
Value 1 with [Unit]*: Consumption [m³]

Value 2 with [Unit]*: Flow [m³/h]

Value 3 with [Unit]*: Gas temperature [°C]

All Values could be changed / preset in production or with Service software.

12. Status / Error messages


12.1 Status messages

CAL

On the part of Kobold Messring GmbH a regular re-calibration is recommended, see chapter 14.

At delivery, the date at which the next recalibration is recommended is internally entered. When this date is reached, a message appears in the display with the status message "CAL".

Note: The measurement will continue without interruption or restriction.

12.2 Error messages

Low Voltage

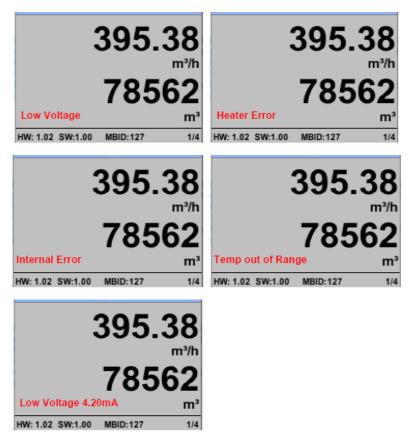
If the supply voltage is less than 11 V, the warning message "Low Voltage" is displayed. This means that the sensor can no longer work / measure correctly and thus there are none measured values for flow, consumption and speed are available.

Heater Error

The error message "Heater Error" occurs in case of failure of the heating sensor.

Internal Error

In the case of this message "Internal Error", the sensor has an internal read error on e.g. EEProm, AD converter etc. detected.


Temp out of Range

At media temperatures outside the specified temperature range, the status message "Temp out of Range" occurs.

Low Voltage 4-20 mA

For sensors with a galvanically isolated 4-20mA output, a min. Supply voltage of 17.5 V is required. If this value is undershot, the error message "Low Voltage 4-20 mA" is displayed.

Error messages:

13. Maintenance

The sensor head should be checked regularly for dirt and cleaned if necessary. Should dirt, dust or oil accumulate on the sensor element, a deviation will occur in the measuring value. An annual check is recommended. Should the compressed air be heavily soiled this interval must be shortened.

14. Cleaning of the sensor head

The sensor head can be cleaned by carefully moving it back and forth in warm water with a small amount of washing-up liquid. Avoid physical intervention on the sensor (e.g. using a sponge or brush). If soiling cannot be removed, the manufacturer must carry out service and maintenance.

15. Re-Calibration

If no customer specifications are given then we recommend carrying out calibration every 12 months. For this purpose, the sensor must be sent to the manufacturer

16. Spare parts and repair

For reasons of measuring accuracy spare parts are not available. If parts are faulty, they must be sent to the supplier for repair.

If the measuring device is used in important company installations, we recommend keeping a spare measuring system ready.

17. Calibration

According to DIN ISO certification of the measuring instruments we recommend to calibrate and if applicable to adjust the instruments regularly from the manufacturer. The calibration intervals should comply with your internal specification. According to DIN ISO we recommend a calibration interval of one year for the instrument KEP-

On request and additional payment, calibration-certificates could be issued. The precision is given due to use DKD-certified flow meters and verifiable.

18. Warranty

If you have reason for complaint, we will of course repair any faults free of charge if it can be proven that they are manufacturing faults. The fault should be reported immediately after it has been found and within the warranty time guaranteed by us. Excluded from this warranty is damage caused by improper use and non-adherence to the instruction manual.

The warranty is also cancelled once the instrument has been opened - as far as this has not been mentioned in the instruction manual for maintenance purposes - or if the serial number in the instrument has been changed, damaged or removed.

The warranty time for the KEP-2 is 12 months. If no other definitions are given the accessory parts have a warranty time of 6 months. Warranty services do not extend the warranty time.

If in addition to the warranty service necessary repairs, adjustments or similar are carried out the warranty services are free of charge but there is a charge for other services such as transport and packaging costs. Other claims, especially those for damage occurring outside the instrument, are not included unless responsibility is legally binding.

After sales service after the warranty time has elapsed

We are of course there for you even after the warranty time has elapsed. In case of malfunctions, please send us the instrument with a short-form description of the fault. Please do not forget to indicate your telephone number so that we can call you in case of any questions.

19. Technical Information

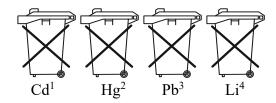
Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com

20. Order Codes

Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com

21. Dimensions

Operating instructions, data sheet, approvals and further information via the QR code on the device or via www.kobold.com


22. Disposal

Note!

- Avoid environmental damage caused by media-contaminated parts.
- Dispose of the device and packaging in an environmentally friendly manner.
- Comply with applicable national and international disposal regulations and environmental regulations.

Batteries

Batteries containing pollutants are marked with a sign consisting of a crossed-out garbage can and the chemical symbol (Cd, Hg, Li or Pb) of the heavy metal that is decisive for the classification as containing pollutants:

- 1. ,,Cd" stands for cadmium
- 2. "Hg" stands for mercury
- 3. "Pb" stands for lead
- 4. "Li" stands for lithium

Electrical and electronic equipment

23. EU Declaration of Conformance

We, KOBOLD Messring GmbH, Nordring 22-24, 65719 Hofheim, Germany, declare under our sole responsibility that the product:

Thermal Flow Meter for bi-directional measurements Model: KEP-2

to which this declaration relates is in conformity with the following EU directives stated below:

2014/30/EU EMC Directive 2011/65/EU RoHS (category 9)

2015/863/EU Delegated Directive (RoHS III)

Also, the following standards are fulfilled:

EN IEC 61326-1:2013

Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements

EN 55011:2016+A1:2017*A11:2020+A2:2021

Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement

Hofheim, 13 Feb. 2024

H. Volz J. Burke General Manager Compliance Manager